首页> 外文OA文献 >Solving Systems of Random Quadratic Equations via Truncated Amplitude Flow
【2h】

Solving Systems of Random Quadratic Equations via Truncated Amplitude Flow

机译:用截断幅度求解随机二次方程组   流

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents a new algorithm, termed \emph{truncated amplitude flow}(TAF), to recover an unknown vector $\bm{x}$ from a system of quadraticequations of the form $y_i=|\langle\bm{a}_i,\bm{x}\rangle|^2$, where$\bm{a}_i$'s are given random measurement vectors. This problem is known to be\emph{NP-hard} in general. We prove that as soon as the number of equations ison the order of the number of unknowns, TAF recovers the solution exactly (upto a global unimodular constant) with high probability and complexity growinglinearly with both the number of unknowns and the number of equations. Our TAFapproach adopts the \emph{amplitude-based} empirical loss function, andproceeds in two stages. In the first stage, we introduce an\emph{orthogonality-promoting} initialization that can be obtained with a fewpower iterations. Stage two refines the initial estimate by successive updatesof scalable \emph{truncated generalized gradient iterations}, which are able tohandle the rather challenging nonconvex and nonsmooth amplitude-based objectivefunction. In particular, when vectors $\bm{x}$ and $\bm{a}_i$'s arereal-valued, our gradient truncation rule provably eliminates erroneouslyestimated signs with high probability to markedly improve upon its untruncatedversion. Numerical tests using synthetic data and real images demonstrate thatour initialization returns more accurate and robust estimates relative tospectral initializations. Furthermore, even under the same initialization, theproposed amplitude-based refinement outperforms existing Wirtinger flowvariants, corroborating the superior performance of TAF over state-of-the-artalgorithms.
机译:本文提出了一种称为\ emph {截断振幅流}(TAF)的新算法,用于从形式为$ y_i = | \ langle \ bm {a}的二次方程组中恢复未知矢量$ \ bm {x} $ _i,\ bm {x} \ rangle | ^ 2 $,其中$ \ bm {a} _i $是随机测量向量。通常,这个问题是\ emph {NP-hard}。我们证明,只要方程的数量与未知数的数量级相同,TAF就会以未知数和方程的数量呈线性增长的高概率和复杂性,准确地恢复解(直到全局单模常数)。我们的TAF方法采用\ emph {基于振幅}的经验损失函数,并分两个阶段进行。在第一阶段,我们引入了\ emmph {orthogonality-promoting}初始化,可以通过几次幂迭代来获得。第二阶段通过可扩展的\ emph {截短的广义梯度迭代}的连续更新完善了初始估计,该更新可以处理颇具挑战性的非凸和非平滑基于幅度的目标函数。特别是,当向量$ \ bm {x} $和$ \ bm {a} _i $的值为实数时,我们的梯度截断规则可以很好地消除错误估计的符号,从而显着改善其未截断的版本。使用合成数据和真实图像进行的数值测试表明,相对于光谱初始化,我们的初始化返回更准确,更可靠的估计。此外,即使在相同的初始化下,建议的基于幅度的细化也优于现有的Wirtinger流量变量,从而证实了TAF优于最新算法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号